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Abstract

Contextual Probabilistic Movement Primitives (Contextual ProMPs) extend
ProMPs by adding context variables — i.e., variables that do not change dur-
ing trajectory execution — to the state representation of a system. In this paper, we
use Contextual ProMPs in the beer pong task to generalize demonstrated throwing
movements to new locations of the cup. Furthermore, we compare different encod-
ings of the context variables, i.e., position of the cup. We approximate the context
by a basis expansion in the weight-space of ProMPs using classical conditioning of
Contextual ProMPs. In addition, we put the context directly into the state vector
using Contextual Linear Regression (CLR), which is equivalent to conditioning of
Contextual ProMPs. Using an approximated context together with conditioning
of Contextual ProMPs, we achieved a success rate of 70% of hits and 20% of
nearly hits. In contrast, CLR was not that convenient in generating such successful
throwing movements, achieving only 2 successful and 3 nearly successful hits out
of overall 10 attempts using the same set of demonstrations.

1 Introduction

Probabilistic Movement Primitives (ProMPs, Paraschos et al. [2013]) is a class of models that can
be viewed as a parametric probability distribution over the space of trajectories. This representation
allows performing various probabilistic operations to adjust a movement primitive to new circum-
stances. For instance, a via-point can be specified through conditioning, and coupling between joints
can be encoded via a distribution over their trajectories. Moreover, movement trajectories can be
conditioned on external variables called context using Contextual ProMPs, e.g., the location of a cup
in beer pong.
We use beer pong1 as the task on which we apply contextual ProMPs. A typical setup of a beer pong
game consists of a ball and a pre-defined amount of the cups filled with beer for each team. Each
team aims then to land the ball in a cup of the other team. A cup with a caught ball is counted as
eliminated. As a first attempt, we simplify the rules by leaving only one cup with no pre-filled beer.
In future work, the robot should be able to play a full game.
Each team can use different techniques in order to land the ball in the cup: an arc shot, a fastball,
and a bounce shot. As a first attempt at solving this problem, we only use the arc shots to make the
throwing movements. In a future work, this approach can be extended to contextual policies that will
choose among different types of shots based on the current game situation.
In this paper, we apply the framework of contextual ProMPs to the game of beer pong in order to
generalize a throwing movement to new locations of the cup. To make contextual ProMPs work in

1A more detailed explanation of the rules can be found at https://en.wikipedia.org/wiki/Beer_pong
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the game of beer pong, we require very precise demonstrations. We describe the way to obtain the
demonstrations, which turns out to produce very precise demonstrations. With this set of demonstra-
tions, we achieve promising results with contextual ProMPs, indicating that contextual ProMPs are
very convenient to solve the problems that contain context variables.
In addition, we compare the generalization quality of Contextual Linear Regression (CLR) in the
weight-space of ProMPs with contextual ProMPs.
Finally, we compare CLR in the weight-space of ProMPs with CLR in the weight-space of Dynamic
Movement Primitives (DMPs, Schaal [2003]).

2 Related Work

Several attempts have been made to learn beer pong in a simulation. Wieland and Hoppe [2013]
optimized a throwing movement parameterized by a DMP using the POWER algorithm. Wagner and
Schmitt [2013] extend their work by enabling generalization to new cup locations through contextual
POWER. Due to the complexity of the problem, only limited generalization ability was achieved. We
propose to learn a single-throw movement by imitation learning and generalize to new cup locations
by contextual ProMP conditioning. Compared to the previous work, this approach can be used
entirely on a physical system, without requiring precise simulation of the ball and robot dynamics.
There are several more approaches that can be applied to the beer pong problem. For instance,
Maeda et al. [2014] used ProMPs to model human–robot interaction by conditioning on the human
movement. We are closely following this work by replacing the human movement with the position
of the cup. Contextual Policy Search (Kupcsik et al. [2017]) can be applied to improve generalization
in case if a good simulator of the environment is available.

3 Probabilistic Movement Primitives

We provide a short introduction into Probabilistic Movement Primitives (ProMPs) and describe the
way how ProMPs can be conditioned on a subset/context of a state. In addition, we discuss the
relationship between contextual ProMP and CLR within the weight-space of ProMPs.

3.1 Basics

In ProMPs, a slice of a trajectory at time t is assumed to be linear in features. To make the parameters
learnable, a Gaussian noise is added to the model, i.e.,

yt =

[
qt
q̇t

]
= ΦT

t w + εy,

where Φt = [φ, φ̇] defines a diagonal and time-dependent basis function matrix and εy ∼ N (0,Σy)

is zero-mean i.i.d. Gaussian noise.φi = exp{− (z−ci)
2

2h } denotes a Gaussian radial basis function.
The probability of observing the trajectory τ is then given by p(τ |w) =

∏
tN (yt|ΦT

t w,Σy).
Temporal modulation and scaling are achieved by introducing the phase variable z which must be a
monotonically increasing function. The basis functions then directly depend on z instead of time.
Encoding the coupling between n joints is achieved by stacking the weights of each joint into one
vectorw = [wT

t , . . . , w
T
n ]T and building a block-diagonal matrix Ψ with Φt as its diagonal entries

for each dimension.
Assuming a Gaussian distribution over the weights w, the probability of observation y at time t is
then given by

p(yt|w) ∼ N (yt|Ψtw,Σy) = N (yt|µw,Σy).

The learning parameters θ = {µw,Σw} can be acquired by maximum likelihood estimation.

3.2 Conditioning

Assuming a Gaussian distribution over trajectories, ProMPs can be easily conditioned on some desired
state y∗t , e.g., new desired position of the cup. For conditioning, a desired observation xt = [y∗T ,Σ

∗
y]
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is added, and, after applying the Bayesian theorem, we have p(w|x∗t ) = N (y∗t |Ψ
T w,Σ∗y)p(w).

To find p(w|x∗t ), we update the mean and the variance:

µ+
w = µ−w + ΣwΨt(Σ

∗
y + ΨT

t ΣwΨt)
−1(y∗t −ΨT

t µw),

Σ+
w = Σ−wΨt(Σ

∗
y + ΨT

t Σ−wΨt)
−1ΨT

t Σ−w .,
(1)

where − and + stand for previous and new calculated variables respectively. The important property
of this conditioning is that the generated trajectory stays within the original distribution if the new
desired goal position lies in the distribution as well. We can also condition on the via-points at the
desired time steps, such that the generated trajectory will be including those via-points. For that, we
update the mean and the variance for each desired via-point.

3.3 Contextual ProMPs

As stated before, we can condition partially on a context c (Paraschos et al. [2017], Maeda et al.
[2014]). This conditioning is done by constructing the basis function matrix Ψt from Eq. (1) to
contain only the variables that participate in the conditioning, and replacing y∗t with c. In case of
the beer pong problem, we let Ψt contain the variables only in the last two diagonal elements and
set the first 7 diagonal elements to zero. We use only x- and y-coordinates to represent the cup
positions and let c contain only the context variables as well, setting other variables to 0. We ignore
the z-coordinate since the cup stays on the same table and, thus, does not change its z-coordinate.
Pluging both Ψt and y∗t into Eq. (1), we obtain a conditioned distribution. This approach can be
viewed as Contextual ProMPs, with

µw|c = µw + ΣwcΣ
−1
cc (c− µc),

Σw|c = Σww − ΣwcΣ
−1
cc Σcw,

(2)

from where we obtain the weights w = N (µw|c,Σw|c).

3.4 Relationship Between the Mean of Contextual ProMPs and CLR

There is a relationship between the mean of ProMP and linear regression, which has been also noted
in [Paraschos et al., 2017, Section 4.3.2]. We expand this observation by deriving the mean of
contextual ProMP in a different way and comparing it to minimizing the objective function of CLR.
Using [Bishop, 2006, Eq. 2.96], we rewrite the mean µw|c from Eq. (2) as

µw|c = µw + ΣwcΣ
−1
cc (c− µc),

= ΣwcΣ
−1
cc c+ (µw − ΣwcΣ

−1
cc µc),

= Ac+ b,

from where we have

A = ΣwcΣ
−1
cc . (3)

We observe that the conditional mean is a linear function of the context, where Σwc and Σcc can be
estimated as

Σ̂wc =
1

N

N∑
i=1

wic
T
i ,

Σ̂cc =
1

N

N∑
i=1

cic
T
i .

(4)

The estimate of the vector b can be found in the same way.
To apply CLR, we obtain one trajectory per cup position c and fit the basis functions of ProMPs to this
trajectory in order to obtain the weights w. After collecting several weight vectors that correspond
to different cup positions, we assume that the vector is a linear function of the cup position, i.e.,
w = Ac+ b. We ignore the additive constant b for simplicity and, thus, have

w = Ac.
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Putting all column vectorswi into a matrix W and putting all row vectors cTi in a matrix C, the linear
regression objective function can be stated as

J = tr{(W −AC)T (W −AC)}. (5)

Minimizing 5 with respect to A, we obtain

A = WCT (CCT )−1. (6)

We rewrite matrix products from Eq. (6) as

WCT =

N∑
i=1

wic
T
i ,

CCT =

N∑
i=1

wic
T
i ,

and, after substituting them back into Eq. (6), obtain a similar equation as after substituting Eq. (4)
into Eq (3). Note that in CLR, we do not normalize the product parts of the matrixA. We will study
the influence of the normalization factor in the experiments on the real robot in the next Section.

4 Experiments

We created a custom end effector that prevents the ball from being falling straight before the throwing
movement. However, it turned out to be hard to model how exactly the trajectory of the ball depends
on the trajectory of the robot. Nevertheless, experiments on the hardware showed a great repeatability
of successful throwing movements. Therefore, we decided to evaluate both contextual ProMPs and
CLR on a real robotic system without bothering with simulation.

4.1 Environment

(a) End effector with a ball inside it. The
end effector consists of a cup to which a

simple holder has been attached.

(b) Cup with markers that are used for
tracking its position. At least 4 markers

are needed to create a rigid body in
OptiTrack.

Figure 1: Experimental setup.

We did our experiments on the Barett WAM2 - a highly dexterous robotic arm with 7 degrees of
freedom. An SL simulator has been used to record and evaluate the computed trajectories before
executing it on the robot. To enable fast prototyping, a Robcom interface has been used which allows
sending the trajectories from Python to the robot via SCTP.
In order to be able to throw the ball, a simple end effector has been built on the last joint. The end
effector consists of a cup and a holder (Figure 1a). The holder prevents the ball from being falling
in case the cup is tilted for more than 90 degrees. A tracking system Optitrack has been used for
recording the cup positions (Figure 1b), which was treated as a rigid body. We tracked the ball in
the initial experiments, but decided against doing this, since tracking the cup position was already
sufficient enough for our experiments. The joint positions were recorded using SL with the help
of Robcom. New trajectories were computed using Python and sent to the robot via the Robcom
interface.

2http://barrett.com/products-arm.htm
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We evaluated two types of throwing movements - from the bottom and from the top. Throwing the
ball from the bottom required too high accelerations which could damage the robot. We, thus, decided
to use only the throws from the top with accelerations that could be reproduced by the robot without
damaging it.

4.2 Obtaining Demonstrations from the Real Robot

Figure 2: An illustration of the workflow that we use to obtain demonstrations.

(a) A trajectory that produces a successful throwing
movement. This trajectory serves as a template for
all demonstrations.

(b) Locations of the cup on the table for which we
provide demonstrations.

Figure 3: An illustration of the demonstrations that has been obtained on the real robot.

Obtaining demonstrations on the real robot is a crucial part of our learning process, as we need to pay
attention to a proper correspondence between joint trajectories and locations of the cup. We propose a
straightforward workflow to obtain demonstrations from a single demonstration provided by a human
on the real robot.
We use kinesthetic teaching to record throwing movements and the OptiTrack system to track
positions of the cup. Instead of recording trajectories for each cup position separately, we record
only one successful throwing movement and filter the resulting joint trajectories using Butterworth
filter (Butterworth [1930]). We generate the needed amount of demonstrations using this single
demonstration by moving the base joints SFE or SAA3 in the direction of new locations of the cup. In-
between, we check if the resulting trajectories (plain and computed by the weights of ProMPs/DMPs)
can be reproduced by the robot. We need 300 basis functions for ProMPs and 100 basis functions
for DMPs in order to reproduce the throwing movement. The high amount of the basis functions
becomes clear if we take a look at the joint trajectories of a throwing movement (Figure 3a). We can
observe there a high peak in the trajectory of elbow-joint (R_EB) which is needed to produce the
throwing movement. This high peak can only be reproduced by a big number of basis functions.
Once a plain trajectory and a trajectory computed by the weights of ProMPs/DMPs are reproducible
at least twice, we record the position of the cup using OptiTrack. We omit the z-position of the cup
since it always stays on the same table and, thus, does not move in vertical directions. Locations of
the cup for which we provide demonstrations are illustrated in Figure 3b.
Figure 2 illustrates the complete workflow. A clear advantage of this approach is that it requires
less time to record multiple demonstrations as we only need one template demonstration provided

3The acronyms SFE and SAA stand for Shoulder Flexion-Extension and Shoulder Abduction-Adduction.
SFE is responsible for rotating the whole robot around its base, while SAA rotates the arm itself.
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by a human on the real robot, while the rest of demonstrations are obtained using this template
demonstration. Another advantage is that we immediately ensure that the trajectories and the
corresponding cup positions are well synchronized. Furthermore, an exact reproduction of the
demonstration by the radial basis functions is no more needed, since we can always place the cup to
that position where the ball lands after executing the demonstration, and, later, record this position.

4.3 Contextual ProMP

We implemented contextual ProMP in the way such that it could be conditioned on some context, as
described in Section 3.3, e.g., on the location of the cup. We first evaluate our implementation on a
simple toy example consisting of only one joint and one context. Thereafter, we evaluate the ability
of contextual ProMPs to generalize to new locations of the cup on the real robot.

4.3.1 Toy Example with Two Joints

To test our implementation of contextual ProMPs, we evaluated it on a simple toy example with one
joint q and one context x, i.e., τ = [q, x]T . The joint trajectory is a sinus signal deformed with the
random noise N (µ,Σ), i.e., q = sin(θ) +N (µ,Σ).The context is a random constant sampled from
the same distribution N (µ,Σ), i.e., x ∼ N (µ,Σ). An example set of demonstrations is illustrated
in Figure 4a. We then create a ProMP with this set of demonstrations. The resulting trajectory
distribution is illustrated in Figure 4b. We condition on the positions xnew ∈ {0.05, 0.10, 0.15, 2.0}
and plot the results in Figures 4c, 4e. As expected, q stays within the original distribution and clearly
correlates with x. We notice also that conditioning has to be done on positions within the distribution
of demonstrations or at least close enough to them. Otherwise, the conditioned trajectory of q can
become multiple times higher than the demonstrations and, thus, will not be reliable anymore and
could potentially damage the real robot. An example of such trajectory is illustrated in Figure 4f.

(a) Provided demonstrations, where
q = sin(θ) + N (µ,Σ) and x ∼
N (µ,Σ).

(b) ProMP created from demonstra-
tions illustrating mean and standard
deviation.

(c) Conditioning on x = 0.10.

(d) Conditioning on x = 0.12. (e) Conditioning on x = 0.15. (f) Conditioning on x = 2.0. There
is a clear shape difference com-
pared to the previous conditioned
trajectories.

Figure 4: A toy example demonstrating the conditioning of a contextual ProMP on a subset.

4.3.2 Conditioning Contextual ProMPs on New Locations of the Cup

We obtain a set of demonstrations as described in Section 4.2 and create a contextual ProMP using
this set of demonstrations. The cup is then placed on a random position but within the region, which
is illustrated in Figure 3b, and condition the contextual ProMP on this position. We repeat these steps
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for 20 random positions of the cup, with results illustrated in Figure 5a. The robot could achieve a
success rate of 70%. If we count successes along with near misses, the success rate even increases to
90%.
It is clear that contextual ProMPs has difficulties in landing the ball to positions that are almost
outside of demonstrations. Both 2 misses, as well as almost all near hits, are at the border of
demonstrations. The only near hit inside of the demonstrated region can be explained by a bad quality
of the used end effector. We, thus, make a conclusion that contextual ProMPs are very convenient to
solve such context problems as beer pong.

4.4 Contextual ProMPs vs. CLR in the Weight-Space of ProMPs vs. CLR in the
Weight-Space of DMPs

As already mentioned in Section 3.4, there is a relationship between the mean of contextual ProMPs
and CLR in the weight-space of ProMPs. As we use the mean of contextual ProMPs to generate
trajectories, we want to check this relationship between contextual ProMPs and CLR in the weight-
space of ProMPs in experiments. For that, we choose 10 random locations of the cup, record their
positions and let both algorithms compute corresponding trajectories. We then let the robot execute
the computed trajectories and count successful hits. The results are illustrated in Figure 5.

(a) 20 throwing attempts with contextual ProMP.

(b) 10 throwing attempts with contextual ProMPs. (c) 10 throwing attempts with CLR to the same
locations of the cup as in Figure 5b.

Figure 5: An illustration of throwing attempts with different approaches - contextual ProMPs, CLR
in the weight-space of ProMPs and CLR in the weight-space of DMPs. Green markers indicate a
successful hit, yellow markers - an almost successful hit, as well as red markers indicate a miss. Grey
stars indicate a location for which a demonstration has been provided. Near miss denotes such a shot,
that has hit either the edge of the cup or its wall without landing in the cup.
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While the contextual ProMP managed to hit the ball in 6 cases and to nearly hit the ball in 2 cases,
CLR in the weight-space of ProMPs could only achieve 3 success and 2 near hits. As we can see
in Figure 5c, CLR has difficulties in hitting the ball at the borders of demonstration area. Note that
in case of contextual ProMP, we approximate locations of the cup using basis functions of ProMPs,
while in case of CLR, we use the plain location of the cup. Considering this observation, we actually
see that using the plain values of the context does not necessarily lead to a better interpolation. On
the contrary, as we have seen in Section 4.3.2, we may produce much better results by approximating
the context variables.
In addition, we compare CLR in the weight-space of ProMPs with CLR in the weight-space of DMPs.
By that, we compare the ability of CLR to produce the same trajectories in the different weight-spaces.
We use the same set of demonstrations to fit the weights of DMPs using Eg. (6). We then condition
both algorithms on the same position of the cup and generate the appropriate trajectories. We subtract
one trajectory from another, sum the resulting differences along the joint axis for each time step and
plot the result in Figure 6.

Figure 6: Squared differences between the sum of the joint trajectories produced by CLR in the
weight-space of DMPs and ProMPs. Both algorithms have been conditioned on the same location
of the cup. A high peak can be observed during the throwing movement, although the difference is
actually small.

We observe that although there is a slight difference between trajectories, it is very small to have any
impact on the throwing movement. We let the robot execute the first trajectory, place the cup to the
position where the ball has landed and let the robot execute the second trajectory. Since the robot has
managed to hit the ball exactly to the same location of the cup, we make a conclusion that CLR in the
weight-space of ProMPs is similar to CLR in the weight-space of DMPs.

5 Conclusion and Future Work

For the beer pong task, the weights of ProMPs require about 300 radial basis functions to accurately
reproduce original demonstrations. A very big number of basis functions means also a very big
number of parameters, which makes ProMPs less attractive for policy search methods. However,
once reliable and repeatable demonstrations are obtained, contextual ProMPs will already generalize
to new cup positions very well. We have proven this statement in our experiments, where the robot
could achieve a success rate of about 80%. By that, we suppose that contextual ProMPs can be used
in any application task where a context variable is presented, once a reliable hardware is provided.
We have fulfilled our initial target to teach the robot to throw the ball in random locations of the cup.
However, there is still some space of improvements. For instance, a good and reliable end effector
could have a good impact on the overall performance. We can provide more demonstrations to cover
the whole space of the table, so that the robot will have no difficulties in throwing the ball to the
borders of the table anymore.
Ideally, the robot should be able to play in every environment as an human does. We, however, have
used a model-free imitation learning approach which is not able to generalize to new environments.
That is, once the experimental setup is changed, the old demonstrations will not work anymore. We
plan to improve this limitation by applying a model-based approach in the same game of beer pong.
Finally, we plan to create a beer pong framework with real rules so that a human will be able to play
a full game against the robot.

8



References
Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and

Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN 0387310738.

Stephen Butterworth. On the Theory of Filter Amplifiers. Wireless Engineer, 7(6):536–541, 1930.

Andras Kupcsik, Marc Peter Deisenroth, Jan Peters, Ai Poh Loh, Prahlad Vadakkepat, and Gerhard
Neumann. Model-based contextual policy search for data-efficient generalization of robot skills.
Artif. Intell., 247(C):415–439, June 2017. ISSN 0004-3702. doi: 10.1016/j.artint.2014.11.005.
URL https://doi.org/10.1016/j.artint.2014.11.005.

G. Maeda, M. Ewerton, R. Lioutikov, H. Ben Amor, J. Peters, and G. Neumann. Learning interaction
for collaborative tasks with probabilistic movement primitives. In 2014 IEEE-RAS International
Conference on Humanoid Robots, pages 527–534, Nov 2014. doi: 10.1109/HUMANOIDS.2014.
7041413.

Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Probabilistic Movement
Primitives. In Proceedings of the 26th International Conference on Neural Information Processing
Systems, NIPS’13, pages 2616–2624, USA, 2013. Curran Associates Inc. URL http://dl.acm.
org/citation.cfm?id=2999792.2999904.

Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Using probabilistic
movement primitives in robotics. Autonomous Robots, Jul 2017. ISSN 1573-7527. doi: 10.1007/
s10514-017-9648-7. URL https://doi.org/10.1007/s10514-017-9648-7.

S. Schaal. Dynamic Movement Primitives - A Framework for Motor Control in Humans and Hu-
manoid Robots. In The International Symposium on Adaptive Motion of Animals and Machines, Ky-
oto, Japan, March 4-8, 2003, March 2003. URL http://www-clmc.usc.edu/publications/
S/schaal-AMAM2003.pdf.

F. Wagner and F. Schmitt. Robot Beerpong: Model-Based Learning for Shifting Targets. PhD the-
sis, TU Darmstadt, 2013. URL http://www.ias.informatik.tu-darmstadt.de/uploads/
Teaching/RobotLearningProject/Wagner_Schmitt_PPPRL_2013.pdf.

A. Wieland and D. Hoppe. Comparison of Different Learning Algorithms for Beer-Pong in SL.
PhD thesis, TU Darmstadt, 2013. URL http://www.ias.informatik.tu-darmstadt.de/
uploads/Teaching/RobotLearningProject/WielandEtAl_RLPP_2013.pdf.

9

https://doi.org/10.1016/j.artint.2014.11.005
http://dl.acm.org/citation.cfm?id=2999792.2999904
http://dl.acm.org/citation.cfm?id=2999792.2999904
https://doi.org/10.1007/s10514-017-9648-7
http://www-clmc.usc.edu/publications/S/schaal-AMAM2003.pdf
http://www-clmc.usc.edu/publications/S/schaal-AMAM2003.pdf
http://www.ias.informatik.tu-darmstadt.de/uploads/Teaching/RobotLearningProject/Wagner_Schmitt_PPPRL_2013.pdf
http://www.ias.informatik.tu-darmstadt.de/uploads/Teaching/RobotLearningProject/Wagner_Schmitt_PPPRL_2013.pdf
http://www.ias.informatik.tu-darmstadt.de/uploads/Teaching/RobotLearningProject/WielandEtAl_RLPP_2013.pdf
http://www.ias.informatik.tu-darmstadt.de/uploads/Teaching/RobotLearningProject/WielandEtAl_RLPP_2013.pdf

	Introduction
	Related Work
	Probabilistic Movement Primitives
	Basics
	Conditioning
	Contextual ProMPs
	Relationship Between the Mean of Contextual ProMPs and CLR

	Experiments
	Environment
	Obtaining Demonstrations from the Real Robot
	Contextual ProMP
	Toy Example with Two Joints
	Conditioning Contextual ProMPs on New Locations of the Cup

	Contextual ProMPs vs. CLR in the Weight-Space of ProMPs vs. CLR in the Weight-Space of DMPs

	Conclusion and Future Work

